PERBANDINGAN PEWARNAAN CITRA GRAYSCALE MENGGUNAKAN METODE K-MEANS CLUSTERING DAN AGGLOMERATIVE HIERARCHICAL CLUSTERING83
software that serves to draw. This jobs are very expensive and takes a lot of time. This study aims to improve the quality of grayscale images so that the results obtained have a better quality than the initial image, implementing techniques to improve image quality by creating a colorless image (gr...
محفوظ في:
المؤلفون الرئيسيون: | , Muhammad Safrizal, , Drs. Agus Harjoko,M.Sc, Ph.D |
---|---|
التنسيق: | Theses and Dissertations NonPeerReviewed |
منشور في: |
[Yogyakarta] : Universitas Gadjah Mada
2012
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://repository.ugm.ac.id/118445/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=58398 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
The Performance Evaluation of K-Means and
Agglomerative Hierarchical Clustering for Rainfall
Patterns and Modelling
بواسطة: Riasetiawan, Mardhani, وآخرون
منشور في: (2022) -
Rainfall Analysis in Semarang City Using K-Means and Agglomerative Hierarchical Clustering Methods
بواسطة: Sudarno, Prabowo Wahyu, وآخرون
منشور في: (2022) -
Efficient agglomerative hierarchical clustering for biological sequence analysis
بواسطة: Nguyen, Thuy Diem
منشور في: (2015) -
A Robust Image Retrieval Method Using Multi-Hierarchical Agglomerative Clustering and Davis-Bouldin Index
بواسطة: Hidayat, Rahmad, وآخرون
منشور في: (2022) -
CLUSTERING WITH AGGLOMERATIVE HIERARCHICAL K-MEANS METHOD (CASE STUDY : RAIL ACCIDENT DATA IN EUROPE AND TRACER STUDY DATA IN ITB )
بواسطة: ISTI RIANI (NIM : 10113017), MILA